Kinetics of error generation in homologous B-family DNA polymerases
نویسندگان
چکیده
The kinetics of forming a proper Watson-Crick base pair as well incorporating bases opposite furan, an abasic site analog, have been well characterized for the B Family replicative DNA polymerase from bacteriophage T4. Structural studies of these reactions, however, have only been performed with the homologous enzyme from bacteriophage RB69. In this work, the homologous enzymes from RB69 and T4 were compared in parallel reactions to determine the relative abilities of the two polymerases to incorporate correct nucleotides as well as to form improper pairings. The kinetic rates for three different exonuclease mutants for each enzyme were measured for incorporation of an A opposite T and an A opposite furan as well as for the formation of A:C and T:T mismatches. The T4 exonuclease mutants were all approximately 2- to 7-fold more efficient than the corresponding RB69 exonuclease mutants depending on whether a T or furan was in the templating position and which exonuclease mutant was used. The rates for mismatch formation by T4 were significantly reduced compared with incorporation opposite furan, much more so than the corresponding RB69 mutant. These results show that there are kinetic differences between the two enzymes but they are not large enough to preclude structural assumptions for T4 DNA polymerase based on the known structure of the RB69 DNA polymerase.
منابع مشابه
Biological role of Escherichia coli translesion synthesis DNA polymerase IV
Damage tolerance is a measure of last resort to rescue cells from DNA damage, without which cells would become highly sensitive to killing by DNA-damaging agents. DNA lesion can be tolerated via different pathways, of which two best studied are homologous recombination and replicative lesion bypass. Replicative lesion bypass requires specialized DNA polymerases, most of which belong to the Y-fa...
متن کاملEvolving DNA Repair Polymerases: From Double—Strand Break Repair to Base Excision Repair and VDJ Recombination
Currently five polymerases have been identified in Escherichia coli, at least eight in Saccharo‐ myces cerevisiae, nine in Schizosaccharomyces pombe, and fourteen in humans [1-4]. Based on the primary structure of the catalytic subunits, DNA polymerases have been classified into different families. Eukaryotic organisms have four families: A family (Polγ, Polθ and Polν), B family (Polα, Polδ, Po...
متن کاملDNA polymerases ν and θ are required for efficient immunoglobulin V gene diversification in chicken
The chicken DT40 B lymphocyte line diversifies its immunoglobulin (Ig) V genes through translesion DNA synthesis-dependent point mutations (Ig hypermutation) and homologous recombination (HR)-dependent Ig gene conversion. The error-prone biochemical characteristic of the A family DNA polymerases Polnu and Pol led us to explore the role of these polymerases in Ig gene diversification in DT40 cel...
متن کاملAn Overview of Y-Family DNA Polymerases and a Case Study of Human DNA Polymerase η
Y-Family DNA polymerases specialize in translesion synthesis, bypassing damaged bases that would otherwise block the normal progression of replication forks. Y-Family polymerases have unique structural features that allow them to bind damaged DNA and use a modified template base to direct nucleotide incorporation. Each Y-Family polymerase is unique and has different preferences for lesions to b...
متن کاملPrimPol prevents APOBEC/AID family mediated DNA mutagenesis
PrimPol is a DNA damage tolerant polymerase displaying both translesion synthesis (TLS) and (re)-priming properties. This led us to study the consequences of a PrimPol deficiency in tolerating mutagenic lesions induced by members of the APOBEC/AID family of cytosine deaminases. Interestingly, during somatic hypermutation, PrimPol counteracts the generation of C>G transversions on the leading st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006